LECTURE NO 14

Electrostatics

Topics

Calculation of Coloum force due to point charge

Vector sum of forces

Numerical

Point charges 1 mC and -2 mC are located at (3, 2, -1) and (-1, -1, 4), respectively. Calculate the electric force on a 10-nC charge located at (0, 3, 1) and the electric field intensity at that point.

Solution:

$$\mathbf{F} = \sum_{k=1,2} \frac{QQ_k}{4\pi\varepsilon_0 R^2} \mathbf{a}_R = \sum_{k=1,2} \frac{QQ_k(\mathbf{r} - \mathbf{r}_k)}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{r}_k|^3}$$

$$= \frac{Q}{4\pi\varepsilon_0} \left\{ \frac{10^{-3}[(0,3,1) - (3,2,-1)]}{|(0,3,1) - (3,2,-1)|^3} - \frac{2.10^{-3}[(0,3,1) - (-1,-1,4)]}{|(0,3,1) - (-1,-1,4)|^3} \right\}$$

$$= \frac{10^{-3} \cdot 10 \cdot 10^{-9}}{4\pi \cdot \frac{10^{-9}}{36\pi}} \left[\frac{(-3,1,2)}{(9+1+4)^{3/2}} - \frac{2(1,4,-3)}{(1+16+9)^{3/2}} \right]$$

$$= 9 \cdot 10^{-2} \left[\frac{(-3,1,2)}{14\sqrt{14}} + \frac{(-2,-8,6)}{26\sqrt{26}} \right]$$

$$\mathbf{F} = -6.507\mathbf{a}_x - 3.817\mathbf{a}_y + 7.506\mathbf{a}_z \, \text{mN}$$

At that point,

$$\mathbf{E} = \frac{\mathbf{F}}{Q}$$
= $(-6.507, -3.817, 7.506) \cdot \frac{10^{-3}}{10 \cdot 10^{-9}}$

$$\mathbf{E} = -650.7\mathbf{a}_x - 381.7\mathbf{a}_y + 750.6\mathbf{a}_z \text{ kV/m}$$